论文标题
分解力的分辨率的高斯拉瓜尔方法
A Gauss Laguerre approach for the resolvent of fractional powers
论文作者
论文摘要
本文介绍了一种非常快速的方法,用于计算运算符的分数能力的分解。该分析保持在希尔伯特空间中(可能无限的)自我伴随正算子的连续环境中。该方法基于高斯 - 局部规则,利用了分解的特定积分表示。我们提供可用于先验选择的急剧错误估计值,以选择达到规定公差的节点的数量。
This paper introduces a very fast method for the computation of the resolvent of fractional powers of operators. The analysis is kept in the continuous setting of (potentially unbounded) self adjoint positive operators in Hilbert spaces. The method is based on the Gauss-Laguerre rule, exploiting a particular integral representation of the resolvent. We provide sharp error estimates that can be used to a priori select the number of nodes to achieve a prescribed tolerance.