论文标题
抛物线SPDE的有限元近似值中噪声的分段线性插值
Piecewise linear interpolation of noise in finite element approximations of parabolic SPDEs
论文作者
论文摘要
在通用域上对随机部分微分方程(SPDE)的有效仿真需要噪声离散化。本文在凸多面体结构域上半线性随机反应 - 接触方程的完全离散的有限元近似中采用了噪声的分段线性插值。高斯噪声是白色的,在空间上相关,并在繁殖的内核希尔伯特空间上以标准圆柱状作业为单位。本文提供了对一般空间协方差内核产生的噪声离散误差的首次严格分析。假定内核是在较大的常规域上定义的,可以通过循环嵌入方法进行采样。在轻度内核假设下结合的误差需要非平凡的技术,例如Hilbert-schmidt界限有限元插值剂的产物,分数Sobolev空间嵌入的熵数以及分数Sobolev规范中插入剂的误差。使用Fenics有限元软件在数值模拟中说明了在应用程序中遇到的内核的示例。主要发现包括:噪声插值不会在$ d \ ge2 $中引入Matérn内核的其他错误;存在产生主要的插值误差的内核;并且在更粗的网格上产生噪声并不总是会损害精度。
Efficient simulation of stochastic partial differential equations (SPDE) on general domains requires noise discretization. This paper employs piecewise linear interpolation of noise in a fully discrete finite element approximation of a semilinear stochastic reaction-advection-diffusion equation on a convex polyhedral domain. The Gaussian noise is white in time, spatially correlated, and modeled as a standard cylindrical Wiener process on a reproducing kernel Hilbert space. This paper provides the first rigorous analysis of the resulting noise discretization error for a general spatial covariance kernel. The kernel is assumed to be defined on a larger regular domain, allowing for sampling by the circulant embedding method. The error bound under mild kernel assumptions requires non-trivial techniques like Hilbert--Schmidt bounds on products of finite element interpolants, entropy numbers of fractional Sobolev space embeddings and an error bound for interpolants in fractional Sobolev norms. Examples with kernels encountered in applications are illustrated in numerical simulations using the FEniCS finite element software. Key findings include: noise interpolation does not introduce additional errors for Matérn kernels in $d\ge2$; there exist kernels that yield dominant interpolation errors; and generating noise on a coarser mesh does not always compromise accuracy.