论文标题

DIRICHLET热内核估计一大类各向异性马尔可夫工艺

Dirichlet Heat kernel estimates for a large class of anisotropic Markov processes

论文作者

Kim, Kyung-Youn, Wang, Lidan

论文摘要

令$ z =(z^{1},\ ldots,z^{d})$为d-dimensionallévy{process},其中{$ z^i $'s}是独立的一维lévyvy{processes},具有相同的跳跃kernel $ nbernel $ nbernel $ nbernel $ nbernel $ n kernel $ n kernel $ c = r^r^r^r^r^r^{ - 1} $ vance。这里$ ϕ $是{an}的增加功能,其较弱的缩放条件$ \ usewessinlineα,\operlineα\ in(0,2)$。我们考虑一个对称函数$ j(x,y)$可与\ begin {align*}相当 \ begin {cases}ν^1(| x^i -y^i |)\ qquad&\ text {如果$ x^i \ ne y^i^i $ for Some $ i $和$ x^j = y^j $ for ALL $ j \ ne I $} \\ 0 $ j \ ne i $} \ \ \ \ \ \ 0 \ qquad&qquad&qquad&\ qquad&\ qquad&\ text {if $ x^i $ y y y y y $ y $ i $ i $ i $ i $ i $ \ end {cases} \ end {align*}与跳跃内核$ j $相对应,存在各向异性马可分子进程$ x $,请参见\ cite {kw22}。在本文中,我们在某些规律性条件下建立了$ x $ in $ c^{1,1} $开放式$ x $ in $ x $ in $ x $的尖锐的双面迪利奇热内核估计。作为主要结果的应用,我们得出了绿色函数估计。

Let $Z=(Z^{1}, \ldots, Z^{d})$ be the d-dimensional Lévy {process} where {$Z^i$'s} are independent 1-dimensional Lévy {processes} with identical jumping kernel $ ν^1(r) =r^{-1}ϕ(r)^{-1}$. Here $ϕ$ is {an} increasing function with weakly scaling condition of order $\underline α, \overline α\in (0, 2)$. We consider a symmetric function $J(x,y)$ comparable to \begin{align*} \begin{cases} ν^1(|x^i - y^i|)\qquad&\text{ if $x^i \ne y^i$ for some $i$ and $x^j = y^j$ for all $j \ne i$}\\ 0\qquad&\text{ if $x^i \ne y^i$ for more than one index $i$}. \end{cases} \end{align*} Corresponding to the jumping kernel $J$, there exists an anisotropic Markov process $X$, see \cite{KW22}. In this article, we establish sharp two-sided Dirichlet heat kernel estimates for $X$ in $C^{1,1}$ open set, under certain regularity conditions. As an application of the main results, we derive the Green function estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源