论文标题

Dialogusr:复杂的对话说法分裂和重新制定多次意图检测

DialogUSR: Complex Dialogue Utterance Splitting and Reformulation for Multiple Intent Detection

论文作者

Meng, Haoran, Xin, Zheng, Liu, Tianyu, Wang, Zizhen, Feng, He, Lin, Binghuai, Zhao, Xuemin, Cao, Yunbo, Sui, Zhifang

论文摘要

在与聊天机器人进行互动时,用户可能会在单个对话话语中引起多种意图。我们提出了Dialogusr,而不是训练专用的多键检测模型,而是对对话说法分裂和重新制定任务,该任务首先将多Indignent用户查询分配到几个单意大利子征询中,然后在子征服中恢复所有核心和省略的信息。 Dialogusr可以用作插件和域名模块,该模块能够以最小的努力为部署的聊天机器人赋予多大检测。我们收集了一个自然存在的高质量数据集,该数据集涵盖了23个域,并具有多步群体程序。为了基准拟议的数据集,我们提出了涉及端到端和两阶段训练的多个基于动作的生成模型,并对拟议基准的利弊进行了深入的分析。

While interacting with chatbots, users may elicit multiple intents in a single dialogue utterance. Instead of training a dedicated multi-intent detection model, we propose DialogUSR, a dialogue utterance splitting and reformulation task that first splits multi-intent user query into several single-intent sub-queries and then recovers all the coreferred and omitted information in the sub-queries. DialogUSR can serve as a plug-in and domain-agnostic module that empowers the multi-intent detection for the deployed chatbots with minimal efforts. We collect a high-quality naturally occurring dataset that covers 23 domains with a multi-step crowd-souring procedure. To benchmark the proposed dataset, we propose multiple action-based generative models that involve end-to-end and two-stage training, and conduct in-depth analyses on the pros and cons of the proposed baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源