论文标题

通过机器学习预测任何长度比例的电子结构

Predicting electronic structures at any length scale with machine learning

论文作者

Fiedler, Lenz, Modine, Normand A., Schmerler, Steve, Vogel, Dayton J., Popoola, Gabriel A., Thompson, Aidan P., Rajamanickam, Sivasankaran, Cangi, Attila

论文摘要

电子在物质上的特性至关重要。它们几乎产生了所有分子和材料特性,并确定从半导体设备到巨型行星内部的物体中的物理作用。这种不同应用的建模和模拟主要依赖于密度功能理论(DFT),这已成为预测物质电子结构的主要方法。尽管事实证明,DFT计算在1998年通过诺贝尔奖获得认可非常有用,但它们的计算缩放将其限制在小型系统中。我们已经开发了一个机器学习框架,用于在任何长度尺度上预测电子结构。它显示在DFT可触犯的系统上最多三个数量级加速,更重要的是,可以对DFT计算不可行的尺度进行预测。我们的工作表明了机器学习如何规避长期存在的计算瓶颈,并将科学推向了与当前任何解决方案相互困境的边界。这种前所未有的建模能力为可持续未来的天体物理学,新颖的材料发现和能源解决方案开辟了一系列无穷无尽的应用。

The properties of electrons in matter are of fundamental importance. They give rise to virtually all molecular and material properties and determine the physics at play in objects ranging from semiconductor devices to the interior of giant gas planets. Modeling and simulation of such diverse applications rely primarily on density functional theory (DFT), which has become the principal method for predicting the electronic structure of matter. While DFT calculations have proven to be very useful to the point of being recognized with a Nobel prize in 1998, their computational scaling limits them to small systems. We have developed a machine learning framework for predicting the electronic structure on any length scale. It shows up to three orders of magnitude speedup on systems where DFT is tractable and, more importantly, enables predictions on scales where DFT calculations are infeasible. Our work demonstrates how machine learning circumvents a long-standing computational bottleneck and advances science to frontiers intractable with any current solutions. This unprecedented modeling capability opens up an inexhaustible range of applications in astrophysics, novel materials discovery, and energy solutions for a sustainable future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源