论文标题
通过深度学习来识别ERA5声音中的闪电过程
Identifying Lightning Processes in ERA5 Soundings with Deep Learning
论文作者
论文摘要
有利于闪电和对流的大气环境通常由基于斗篷,风剪,电荷分离或组合等专业知识的代理或参数化表示。机器学习,高分辨率重新分析和准确的闪电观察领域的最新发展开放了识别量身定制的代理而没有事先专家知识的可能性。为了识别有利于闪电的垂直轮廓,深层神经网络ERA5云,云物理学,质量场变量和风的垂直轮廓与奥地利闪电检测和信息系统(ALDIS)(ALDIS)的闪电位置数据(ALDIS),该数据已转换为二进制目标变量,将ERA5细胞作为带有闪电活性的细胞和细胞,而无需闪电活动。 ERA5参数是在模型级别上进行的,超出了对流层,形成了大约的输入层。 670个功能。 2010 - 2018年的数据是培训/验证。在2019年独立测试数据上,深层网络的表现优于基于气象专业知识的功能的参考。 Shap值突出了网络学到的大气过程,该过程将上层和中层层中的云冰和雪含量视为非常相关的特征。由于这些模式对应于雷暴云中电荷的分离,因此深度学习模型可以作为对闪电的物理有意义的描述。根据该区域,神经网络还利用垂直风或质量曲线来正确地将细胞与闪电活性分类。
Atmospheric environments favorable for lightning and convection are commonly represented by proxies or parameterizations based on expert knowledge such as CAPE, wind shears, charge separation, or combinations thereof. Recent developments in the field of machine learning, high resolution reanalyses, and accurate lightning observations open possibilities for identifying tailored proxies without prior expert knowledge. To identify vertical profiles favorable for lightning, a deep neural network links ERA5 vertical profiles of cloud physics, mass field variables and wind to lightning location data from the Austrian Lightning Detection and Information System (ALDIS), which has been transformed to a binary target variable labelling the ERA5 cells as cells with lightning activity and cells without lightning activity. The ERA5 parameters are taken on model levels beyond the tropopause forming an input layer of approx. 670 features. The data of 2010-2018 serve as training/validation. On independent test data, 2019, the deep network outperforms a reference with features based on meteorological expertise. SHAP values highlight the atmospheric processes learned by the network which identifies cloud ice and snow content in the upper and mid-troposphere as very relevant features. As these patterns correspond to the separation of charge in thunderstorm cloud, the deep learning model can serve as physically meaningful description of lightning. Depending on the region, the neural network also exploits the vertical wind or mass profiles to correctly classify cells with lightning activity.