论文标题

libeamsnet:在有限的DVL束测量的情况下,AUV速度矢量估计

LiBeamsNet: AUV Velocity Vector Estimation in Situations of Limited DVL Beam Measurements

论文作者

Cohen, Nadav, Klein, Itzik

论文摘要

自动水下车辆(AUV)用于海洋应用,可以在人类范围以外的深水水下环境中运行。可以通过融合惯性导航系统和多普勒速度日志传感器(DVL)来获得自主导航问题的标准解决方案。后者测量了四个光束速度,以估计车辆的速度向量。在实际情况下,如果AUV在复杂的水下环境中运行,DVL可能会少于三个光束速度。在这种情况下,无法估计车辆的速度向量导致导航解决方案漂移,在某些情况下,AUV需要中止任务并返回表面。为了避免这种情况,在本文中,我们提出了一个深度学习框架Libeamsnet,该框架利用惯性数据和部分光束速度在两个缺失的光束方案中回归缺失的光束。一旦获得所有光束,就可以估算车辆的速度矢量。在地中海的海上实验证实了进近性能。在否则无法提供估计值的情况下,该结果在车辆速度矢量估计中显示了高达7.2%的速度误差。

Autonomous underwater vehicles (AUVs) are employed for marine applications and can operate in deep underwater environments beyond human reach. A standard solution for the autonomous navigation problem can be obtained by fusing the inertial navigation system and the Doppler velocity log sensor (DVL). The latter measures four beam velocities to estimate the vehicle's velocity vector. In real-world scenarios, the DVL may receive less than three beam velocities if the AUV operates in complex underwater environments. In such conditions, the vehicle's velocity vector could not be estimated leading to a navigation solution drift and in some situations the AUV is required to abort the mission and return to the surface. To circumvent such a situation, in this paper we propose a deep learning framework, LiBeamsNet, that utilizes the inertial data and the partial beam velocities to regress the missing beams in two missing beams scenarios. Once all the beams are obtained, the vehicle's velocity vector can be estimated. The approach performance was validated by sea experiments in the Mediterranean Sea. The results show up to 7.2% speed error in the vehicle's velocity vector estimation in a scenario that otherwise could not provide an estimate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源