论文标题

$ su(q)$量子链和二元方程的拓扑泵

Topological pump of $SU(Q)$ quantum chain and Diophantine equation

论文作者

Hatsugai, Yasuhiro, Kuno, Yoshihito

论文摘要

$ su(q)$量子链的拓扑泵与电流相关联,这是由于本地$ [u(1)]^{\ otimes q} $ coguge gouge formate formions的不变性。 $ su(q)$不变二聚体阶段的特征是$ z_q $贝里阶段作为拓扑订单参数,其$ d $维二二维扭曲空间($ d = q-1 $)是合成的布里素区域。通过包含由理性参数$φ= p/q $指定的对称性破坏扰动,围在相边界周围的泵的特征是$ q $ chern数字与与统一的无限无限曲折有关的电流相关的泵。对开放/周期/扭曲边界条件下系统的分析阐明了泵的块状对应关系,其中质量中心(COM)产生的大型仪表转换起着核心作用。使用二苯胺方程给出了Chern数字的明确公式。已经提出了通过确切的对角线化和有限系统的DMRG的数值证明($ Q = 3,4 $和5 $),以确认低能谱,边缘状态,COM,CHERN,CHERN数字和批量边缘的一般讨论。还提到了一般$ su(q)$量子链的修改后的lieb-schultz-mattis类型参数。

A topological pump of the $SU(Q)$ quantum chain is proposed associated with a current due to a local $[U(1)]^{\otimes Q}$ gauge invariance of colored fermions. The $SU(Q)$ invariant dimer phases are characterized by the $Z_Q$ Berry phases as a topological order parameter with a $d$-dimensional twist space ($d=Q-1$) as a synthetic Brillouin zone. By inclusion of the symmetry breaking perturbation specified by a rational parameter $Φ=P/Q$, the pump, that encloses around the phase boundary, is characterized by the $Q$ Chern numbers associated with the currents due to uniform infinitesimal twists. The analysis of the systems under the open/periodic/twisted boundary conditions clarifies the bulk-edge correspondence of the pump where the large gauge transformation generated by the center of mass (CoM) plays a central role. An explicit formula for the Chern number is given by using the Diophanine equation. Numerical demonstration by the exact diagonalization and the DMRG for finite systems ($Q=3,4$ and $5$) have been presented to confirm the general discussions for low energy spectra, edge states, CoM's, Chern numbers and the bulk-edge correspondence. A modified Lieb-Schultz-Mattis type argument for the general $SU(Q)$ quantum chain is also mentioned.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源