论文标题

无监督的重力镜头

An Unsupervised Hunt for Gravitational Lenses

论文作者

Sheng, Stephen, C, Keerthi Vasan G., Choi, Chi Po, Sharpnack, James, Jones, Tucker

论文摘要

强烈的引力镜头使我们能够通过弯曲前景中巨大物体的背景物体的光线来凝视最远的空间。不幸的是,这些镜头极为罕见,并且在天文学调查中手动找到它们是困难且耗时的。因此,我们的任务是以自动化的方式找到它们,很少有已知的镜片以形成积极样本。为了帮助我们进行培训,我们可以在调查图像中模拟逼真的镜头以形成积极样本。用这些模拟镜头训练重新网络模型的天真训练模型导致所需的高召回率的精度较差,因为模拟包含该模型所学的伪影。在这项工作中,我们开发了一种镜头检测方法,该方法结合了仿真,数据增强,半监督学习和gan,以通过数量级来改善这种性能。我们进行消融研究,并检查绩效如何与非镜头和模拟镜片的数量扩展。这些发现使研究人员可以进行大多数“盲人”调查,并以高精度和回忆对强力透镜进行分类。

Strong gravitational lenses allow us to peer into the farthest reaches of space by bending the light from a background object around a massive object in the foreground. Unfortunately, these lenses are extremely rare, and manually finding them in astronomy surveys is difficult and time-consuming. We are thus tasked with finding them in an automated fashion with few if any, known lenses to form positive samples. To assist us with training, we can simulate realistic lenses within our survey images to form positive samples. Naively training a ResNet model with these simulated lenses results in a poor precision for the desired high recall, because the simulations contain artifacts that are learned by the model. In this work, we develop a lens detection method that combines simulation, data augmentation, semi-supervised learning, and GANs to improve this performance by an order of magnitude. We perform ablation studies and examine how performance scales with the number of non-lenses and simulated lenses. These findings allow researchers to go into a survey mostly ``blind" and still classify strong gravitational lenses with high precision and recall.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源