论文标题

多视图推理:数学单词问题的一致对比度学习

Multi-View Reasoning: Consistent Contrastive Learning for Math Word Problem

论文作者

Zhang, Wenqi, Shen, Yongliang, Ma, Yanna, Cheng, Xiaoxia, Tan, Zeqi, Nong, Qingpeng, Lu, Weiming

论文摘要

数学词求解器需要有关文本中数量的精确关系推理,也需要用于不同方程式的可靠生成。当前的序列到树或关系提取方法仅从固定视图中考虑这一点,他们努力同时处理复杂的语义和各种方程。但是,人类解决自然涉及两种一致的推理观点:自上而下和自下而上,就像数学方程式也可以以多种等效形式表示:预订和后阶。我们为更完整的语义与方程式映射提出了多视图一致的对比学习。整个过程被分解为两个独立但一致的观点:自上而下的分解和自下而上的构造,两个推理观点在多层次上保持一致,以保持一致性,增强了全球生成和精确的推理。在两种语言上的多个数据集上进行的实验表明,我们的方法显着优于现有基准,尤其是在复杂问题上。我们还显示在一致的对齐后,多视图可以吸收视图的优点,并产生与数学定律一致的更多样化的结果。

Math word problem solver requires both precise relation reasoning about quantities in the text and reliable generation for the diverse equation. Current sequence-to-tree or relation extraction methods regard this only from a fixed view, struggling to simultaneously handle complex semantics and diverse equations. However, human solving naturally involves two consistent reasoning views: top-down and bottom-up, just as math equations also can be expressed in multiple equivalent forms: pre-order and post-order. We propose a multi-view consistent contrastive learning for a more complete semantics-to-equation mapping. The entire process is decoupled into two independent but consistent views: top-down decomposition and bottom-up construction, and the two reasoning views are aligned in multi-granularity for consistency, enhancing global generation and precise reasoning. Experiments on multiple datasets across two languages show our approach significantly outperforms the existing baselines, especially on complex problems. We also show after consistent alignment, multi-view can absorb the merits of both views and generate more diverse results consistent with the mathematical laws.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源