论文标题

兼容有限元动力核心的杂交多移民预处理

Hybridised multigrid preconditioners for a compatible finite element dynamical core

论文作者

Betteridge, Jack D., Cotter, Colin J., Gibson, Thomas H., Griffith, Matthew J., Melvin, Thomas, Müller, Eike H.

论文摘要

大气运动方程的兼容有限元离散是最近引起了相当大的兴趣。半幅度时间播放方法需要重复的线性方程组的大鞍点系统。由于速度质量矩阵是非基条的,因此对该系统进行了具有挑战性的条件,从而导致密集的Schur补体。杂交离散化克服了这一问题:使用拉格朗日乘数的速度场的弱执行连续性导致方程式稀疏,该方程式与传统方法中的压力Schur补充具有相似的结构。我们描述了如何使用非巢式两级预处理对杂交稀疏系统进行预处理。为了解决粗糙系统,我们使用了一些作者先前提出的近似Schur补体方法中使用的多移民压力求解器。我们的方法大大减少了求解器迭代的数量。该方法在大都会办公室的下一代气候和天气预测模型LFRIC中显示出极好的性能和尺度到大量核心。

Compatible finite element discretisations for the atmospheric equations of motion have recently attracted considerable interest. Semi-implicit timestepping methods require the repeated solution of a large saddle-point system of linear equations. Preconditioning this system is challenging since the velocity mass matrix is non-diagonal, leading to a dense Schur complement. Hybridisable discretisations overcome this issue: weakly enforcing continuity of the velocity field with Lagrange multipliers leads to a sparse system of equations, which has a similar structure to the pressure Schur complement in traditional approaches. We describe how the hybridised sparse system can be preconditioned with a non-nested two-level preconditioner. To solve the coarse system, we use the multigrid pressure solver that is employed in the approximate Schur complement method previously proposed by the some of the authors. Our approach significantly reduces the number of solver iterations. The method shows excellent performance and scales to large numbers of cores in the Met Office next-generation climate- and weather prediction model LFRic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源