论文标题
在非富裕的费米子链中
Volume-to-Area Law Entanglement Transition in a non-Hermitian Free Fermionic Chain
论文作者
论文摘要
我们将非热的Su-Schrieffer-Heeger模型的动力学视为连续监测的自由费米链的无单击限制,在该链中,在两个sublattices上测量了颗粒和孔。该模型具有$ \ MATHCAL {pt} $ - 对称性,我们表明,它可以自发地破裂,这是测量背光的强度的函数,从而导致了频谱过渡,其中准粒子在Brillouin区域的斑块中获得有限的寿命。我们在热力学极限中计算纠缠熵的动力学,并证明了体积律和区域尺度缩放之间的纠缠跃迁,我们在分析上表征了。有趣的是,我们证明了纠缠过渡和$ \ MATHCAL {pt} $ - 对称性破裂不合时宜,前者是在胶质粒子的整个衰减谱时发生的。
We consider the dynamics of the non-Hermitian Su-Schrieffer-Heeger model arising as the no-click limit of a continuously monitored free fermion chain where particles and holes are measured on two sublattices. The model has $\mathcal{PT}$-symmetry, which we show to spontaneously break as a function of the strength of measurement backaction, resulting in a spectral transition where quasiparticles acquire a finite lifetime in patches of the Brillouin zone. We compute the entanglement entropy's dynamics in the thermodynamic limit and demonstrate an entanglement transition between volume-law and area-law scaling, which we characterize analytically. Interestingly we show that the entanglement transition and the $\mathcal{PT}$-symmetry breaking do not coincide, the former occurring when the entire decay spectrum of the quasiparticle becomes gapped.