论文标题

使用Yolov5和Mosaic增强的自动牛识别:比较分析

Automatic Cattle Identification using YOLOv5 and Mosaic Augmentation: A Comparative Analysis

论文作者

Dulal, Rabin, Zheng, Lihong, Kabir, Muhammad Ashad, McGrath, Shawn, Medway, Jonathan, Swain, Dave, Swain, Will

论文摘要

您只看一次(YOLO)是一种流行的单阶段对象检测模型,可用于实时对象检测,准确性和速度。本文研究了Yolov5模型,以识别院子中的牛。当前对牛识别的解决方案包括射频识别(RFID)标签。当RFID标签丢失或损坏时,就会发生问题。生物识别解决方案可以识别牛,并有助于分配丢失或损坏的标签或替换基于RFID的系统。牛的枪口模式是独特的生物识别溶液,例如人类的指纹。本文旨在介绍我们最近利用五个流行对象检测模型的研究,这些模型研究了Yolov5的结构,研究了使用Yolov5模型的八个骨架的性能,以及通过对可用的牛supluse嘴图像的实验结果在Yolov5中的Mosaic Exmentation在Yolov5中的影响。最后,我们结论是在自动牛鉴定中使用Yolov5的出色潜力。我们的实验表明,变压器的Yolov5表现最佳,平均平均精度为0.5(IOU大于50%时的AP的平均值)为0.995,而MAP 0.5:0.95(AP的平均AP从50%到95%IOU,间隔为5%)为0.9366。此外,我们的实验表明,通过在实验中使用的所有骨干中使用镶嵌性增强,模型的准确性提高。此外,我们还可以通过部分枪口图像检测牛。

You Only Look Once (YOLO) is a single-stage object detection model popular for real-time object detection, accuracy, and speed. This paper investigates the YOLOv5 model to identify cattle in the yards. The current solution to cattle identification includes radio-frequency identification (RFID) tags. The problem occurs when the RFID tag is lost or damaged. A biometric solution identifies the cattle and helps to assign the lost or damaged tag or replace the RFID-based system. Muzzle patterns in cattle are unique biometric solutions like a fingerprint in humans. This paper aims to present our recent research in utilizing five popular object detection models, looking at the architecture of YOLOv5, investigating the performance of eight backbones with the YOLOv5 model, and the influence of mosaic augmentation in YOLOv5 by experimental results on the available cattle muzzle images. Finally, we concluded with the excellent potential of using YOLOv5 in automatic cattle identification. Our experiments show YOLOv5 with transformer performed best with mean Average Precision (mAP) 0.5 (the average of AP when the IoU is greater than 50%) of 0.995, and mAP 0.5:0.95 (the average of AP from 50% to 95% IoU with an interval of 5%) of 0.9366. In addition, our experiments show the increase in accuracy of the model by using mosaic augmentation in all backbones used in our experiments. Moreover, we can also detect cattle with partial muzzle images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源