论文标题
在无效的磁共振成像(MRI)重建中对人类观察者的检测进行建模,并进行总变化和小波稀疏正则化
Modeling human observer detection in undersampled magnetic resonance imaging (MRI) reconstruction with total variation and wavelet sparsity regularization
论文作者
论文摘要
目的:基于任务的磁共振成像中基于任务的图像质量评估提供了一种评估正则化对任务性能的影响的方法。在这项工作中,我们评估了总变异(TV)和小波正则化对人体检测具有不同背景的信号的影响,并验证了模型观察者在预测人类绩效方面的影响。 方法:人类观察者的研究使用了两种抗强制选择(2-AFC)试验,具有一个小信号的确切任务,但背景有所不同,用于从底层采样的多线圈数据中重建的流体反转恢复图像。我们使用电视和小波稀疏限制的3.48底采样因子。使用内部噪声的稀疏差异差异(S-DOG)观察者用于模拟人类观察者的检测。 结果:我们观察到一种趋势,即人类观察者检测性能在正则化参数中的广泛值之前保持相当恒定,然后在大值下降。对于归一化的集合根平方误差,发现了类似的结果。在没有改变内部噪声的情况下,模型观察者跟踪了人类观察者的性能,随着正则化的增加,但对电视和小波稀少度的大量正则化以及两个参数的组合高估了PC。 结论:对于我们研究的任务,S-DOG观察者能够在广泛的正则化参数上通过电视和小波稀疏的正规化来合理地预测人类的性能。我们观察到了一种趋势,即在一系列正规化参数之前,任务性能保持相当恒定,然后减少大量正则化。
Purpose: Task-based assessment of image quality in undersampled magnetic resonance imaging provides a way of evaluating the impact of regularization on task performance. In this work, we evaluated the effect of total variation (TV) and wavelet regularization on human detection of signals with a varying background and validated a model observer in predicting human performance. Approach: Human observer studies used two-alternative forced choice (2-AFC) trials with a small signal known exactly task but with varying backgrounds for fluid-attenuated inversion recovery images reconstructed from undersampled multi-coil data. We used a 3.48 undersampling factor with TV and a wavelet sparsity constraints. The sparse difference-of-Gaussians (S-DOG) observer with internal noise was used to model human observer detection. Results: We observed a trend that the human observer detection performance remained fairly constant for a broad range of values in the regularization parameter before decreasing at large values. A similar result was found for the normalized ensemble root mean squared error. Without changing the internal noise, the model observer tracked the performance of the human observers as the regularization was increased but overestimated the PC for large amounts of regularization for TV and wavelet sparsity, as well as the combination of both parameters. Conclusions: For the task we studied, the S-DOG observer was able to reasonably predict human performance with both TV and wavelet sparsity regularizers over a broad range of regularization parameters. We observed a trend that task performance remained fairly constant for a range of regularization parameters before decreasing for large amounts of regularization.