论文标题

一类Constacyclic代码是通用的Reed-Solomon代码

A class of constacyclic codes are generalized Reed-Solomon codes

论文作者

Liu, Hongwei, Liu, Shengwei

论文摘要

从给定的长度和代码尺寸无法提高最小距离的意义上,最大距离可分离(MDS)代码是最佳的。最突出的MDS代码是通用的Reed-Solomon(GRS)代码。线性代码$ \ MATHCAL {C} $的Square $ \ MATHCAL {C}^{2} $是由$ \ Mathcal {C} $中每对CodeWords的组成产品跨越的线性代码。对于MDS代码$ \ MATHCAL {C} $,通过确定$ \ Mathcal {C}^{2} $的尺寸,确定$ \ Mathcal {C} $是否为GRS代码很方便。在本文中,我们研究了MDS Constacyclic代码为GRS的条件。为此,我们首先研究了constacyclic代码的平方。然后,我们给出了足够的条件,即constacyclic代码为grs。特别是,我们提供了一种必要和充分的条件,即质量长度的constacyclic代码为grs。

Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for a given length and code size. The most prominent MDS codes are generalized Reed-Solomon (GRS) codes. The square $\mathcal{C}^{2}$ of a linear code $\mathcal{C}$ is the linear code spanned by the component-wise products of every pair of codewords in $\mathcal{C}$. For an MDS code $\mathcal{C}$, it is convenient to determine whether $\mathcal{C}$ is a GRS code by determining the dimension of $\mathcal{C}^{2}$. In this paper, we investigate under what conditions that MDS constacyclic codes are GRS. For this purpose, we first study the square of constacyclic codes. Then, we give a sufficient condition that a constacyclic code is GRS. In particular, We provide a necessary and sufficient condition that a constacyclic code of a prime length is GRS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源