论文标题

DCL-SLAM:一个机器人群的分布式协作激光雷达大满贯框架

DCL-SLAM: A Distributed Collaborative LiDAR SLAM Framework for a Robotic Swarm

论文作者

Zhong, Shipeng, Qi, Yuhua, Chen, Zhiqiang, Wu, Jin, Chen, Hongbo, Liu, Ming

论文摘要

要在未知环境中执行协作任务,机器人群需要建立全球参考框架,并将自己定位在对环境的共同理解中。但是,它在现实世界中面临许多挑战,例如有关不存在环境的先前信息以及团队成员之间的沟通不良。这项工作介绍了DCL-Slam,这是一个完全分布的协作LIDAR SLAM SLAM框架,该框架旨在与机器人群一起在未知环境中同时共定位,并提供最小的信息交换。 DCL-SLAM基于临时无线对等通信(有限的带宽和通信范围),采用轻量级的激光雷达IRIS描述符,以获得位置识别,并且不需要团队之间的完全连通性。 DCL-SLAM包括三个主要部分:可更换的单机器人前端,可产生激光镜的进程结果;一个分布式循环闭合模块,可检测使用键框的机器人间循环闭合;和一个分布式的后端模块,该模块适应分布式姿势图优化器与成对一致的测量集最大化算法相结合,以拒绝虚假的射击循环封闭。我们将提议的框架与各种开源激光雷达的探光法相结合,以显示其多功能性。在各种尺度和环境上对基准测试数据集和现场实验进行了广泛的评估。实验结果表明,与其他最先进的多机器人大满贯系统相比,DCL-SLAM的准确性更高,通信带宽更低。完整的源代码可从https://github.com/zhongshp/dcl-slam.git获得。

To execute collaborative tasks in unknown environments, a robotic swarm needs to establish a global reference frame and locate itself in a shared understanding of the environment. However, it faces many challenges in real-world scenarios, such as the prior information about the environment being absent and poor communication among the team members. This work presents DCL-SLAM, a fully distributed collaborative LiDAR SLAM framework intended for the robotic swarm to simultaneously co-localize in an unknown environment with minimal information exchange. Based on ad-hoc wireless peer-to-peer communication (limited bandwidth and communication range), DCL-SLAM adopts the lightweight LiDAR-Iris descriptor for place recognition and does not require full connectivity among teams. DCL-SLAM includes three main parts: a replaceable single-robot front-end that produces LiDAR odometry results; a distributed loop closure module that detects inter-robot loop closures with keyframes; and a distributed back-end module that adapts distributed pose graph optimizer combined with a pairwise consistent measurement set maximization algorithm to reject spurious inter-robot loop closures. We integrate our proposed framework with diverse open-source LiDAR odometry methods to show its versatility. The proposed system is extensively evaluated on benchmarking datasets and field experiments over various scales and environments. Experimental result shows that DCL-SLAM achieves higher accuracy and lower communication bandwidth than other state-of-art multi-robot SLAM systems. The full source code is available at https://github.com/zhongshp/DCL-SLAM.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源