论文标题
从激光Wakefield加速器中使用MEV电子源的超快电子衍射
Ultrafast Electron Diffraction with MeV Electron Source from a Laser Wakefield Accelerator
论文作者
论文摘要
MEV Ultrafast电子衍射(UED)是一项广泛使用的技术,用于在许多领域进行超快的结构动态研究。激光Wakefield加速器(LWFA)的开发设想了基于UED应用中LWFA的高级全光源源的巨大潜力。我们通过实验证明,具有微型永久磁铁光束线的基于LWFA的设备可以生成并操纵适合UED的电子束。在光束传输中,由于能量扩散而具有内在短持续时间拉伸的LWFA电子束,然后通过随后的双弯曲achromat压缩。优化的双弯曲Achromat可以使光束线等到相等,从而可以消除射击能量波动引起的到达时间抖动,并允许LWFAS出现自然激光梁同步的优势。通过能量滤波,可以将光束的能量扩散降低到3%(FWHM),而每束足够的电荷(11.9 fc)则可以保留衍射。始终模拟表明,束长度达到约30 fs(RMS),具有相同的实验配置。获得了单晶金样品的清晰单发和多发衍射模式,并且衍生的晶格常数与实际值非常吻合。我们的原理实验实验为使用MEV LWFA梁检测超快结构动力学打开了大门,并为具有低于10-FS时间分辨率的UED应用铺平了道路。
MeV ultrafast electron diffraction (UED) is a widely used technology for ultrafast structural dynamic studies of matters in numerous areas. The development of laser wakefield accelerator (LWFA) envisions great potential of advanced all-optical electron source based on LWFA in UED applications. We experimentally demonstrated that an LWFA-based device with a miniaturized permanent magnet beamline can generate and manipulate electron beams suitable for UED. In the beam transmission, the LWFA electron beams with intrinsic short duration stretch due to energy spread and then are compressed by a following double bend achromat. The optimized double bend achromat can make the beamline isochronous such that the arrival time jitter induced by the shot-to-shot energy fluctuation can be eliminated, and allow the advantage of the natural laser-beam synchronization for LWFAs to emerge. With the energy filtering, the beam energy spread can be reduced to 3% (FWHM) while a sufficient amount of charge (11.9 fC) per bunch for diffraction is retained. Start-to-end simulations showed that the bunch length reaches ~30 fs (rms) with the same experimental configuration. Clear single-shot and multi-shot diffraction patterns of single-crystalline gold samples are obtained and the derived lattice constant agrees excellently with the real value. Our proof-of-principle experiments open the door to the detection of ultrafast structural dynamics using MeV LWFA beams, and pave the way for the UED applications with sub-10-fs temporal resolution.