论文标题

通过预测可能的运动模式,无监督的多对象分割

Unsupervised Multi-object Segmentation by Predicting Probable Motion Patterns

论文作者

Karazija, Laurynas, Choudhury, Subhabrata, Laina, Iro, Rupprecht, Christian, Vedaldi, Andrea

论文摘要

我们提出了一种新方法,以学习无需手动监督的多个图像对象。该方法可以提取对象形成静止图像,但使用视频进行监督。尽管先前的工作已经考虑了分割运动的动作,但关键的见解是,尽管可以使用运动来识别对象,但并非所有对象都在运动:没有运动并不意味着没有对象。因此,我们的模型学会了预测可能包含运动模式特征的运动模式的图像区域。它不能预测特定的运动,这是无法从静止图像中明确进行的,而是可能的动作的分布,其中包括对象根本不移动的可能性。我们证明了这种方法比其确定性对应物的优势,并在模拟和现实世界的基准测试中显示了最新的无监督对象分割性能,即使在测试时间甚至在测试时间都使用运动。由于我们的方法适用于分割场景的各种网络体系结构,因此我们还将其应用于现有的基于图像重建的模型,显示出严重的改进。项目页面和代码:https://www.robots.ox.ac.uk/~vgg/research/ppmp。

We propose a new approach to learn to segment multiple image objects without manual supervision. The method can extract objects form still images, but uses videos for supervision. While prior works have considered motion for segmentation, a key insight is that, while motion can be used to identify objects, not all objects are necessarily in motion: the absence of motion does not imply the absence of objects. Hence, our model learns to predict image regions that are likely to contain motion patterns characteristic of objects moving rigidly. It does not predict specific motion, which cannot be done unambiguously from a still image, but a distribution of possible motions, which includes the possibility that an object does not move at all. We demonstrate the advantage of this approach over its deterministic counterpart and show state-of-the-art unsupervised object segmentation performance on simulated and real-world benchmarks, surpassing methods that use motion even at test time. As our approach is applicable to variety of network architectures that segment the scenes, we also apply it to existing image reconstruction-based models showing drastic improvement. Project page and code: https://www.robots.ox.ac.uk/~vgg/research/ppmp .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源