论文标题

使用总正方

Error-Covariance Analysis of Monocular Pose Estimation Using Total Least Squares

论文作者

Maleki, Saeed, Crassidis, John, Cheng, Yang, Schmid, Matthias

论文摘要

这项研究提出了使用总正方形的单眼姿势估计问题的理论结构。特征的单位矢量观察线是从单眼相机图像中提取的。首先,为姿势估计问题制定了优化框架,从摄像头预测中心从单位向量提取的观察向量指向图像特征。通过派生优化框架获得的态度和位置解决方案已被证明可以在态度误差的小角度近似下到达Cramér-Rao下限。具体而言,对Fisher信息矩阵和Cramér-Rao边界进行了评估,并将其与误差协方差表达式的分析推导进行了比较,以严格证明估计值的最佳性。测量模型的传感器数据是通过一系列矢量观测来提供的,并假定两个完全填充的噪声协同矩阵用于身体和参考观察数据。以前的矩阵的倒数以成本函数中的一系列重量矩阵出现。在Monte-Carlo框架中模拟了所提出的解决方案,并使用10,000个样品进行验证差异分析。

This study presents a theoretical structure for the monocular pose estimation problem using the total least squares. The unit-vector line-of-sight observations of the features are extracted from the monocular camera images. First, the optimization framework is formulated for the pose estimation problem with observation vectors extracted from unit vectors from the camera center-of-projection, pointing towards the image features. The attitude and position solutions obtained via the derived optimization framework are proven to reach the Cramér-Rao lower bound under the small angle approximation of the attitude errors. Specifically, The Fisher Information Matrix and the Cramér-Rao bounds are evaluated and compared to the analytical derivations of the error-covariance expressions to rigorously prove the optimality of the estimates. The sensor data for the measurement model is provided through a series of vector observations, and two fully populated noise-covariance matrices are assumed for the body and reference observation data. The inverse of the former matrices appear in terms of a series of weight matrices in the cost function. The proposed solution is simulated in a Monte-Carlo framework with 10,000 samples to validate the error-covariance analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源