论文标题
Veneziano的变化:字符串振幅的独特性如何?
Veneziano Variations: How Unique are String Amplitudes?
论文作者
论文摘要
弦乐理论提供了一种优雅而具体的实现,即如何始终如一地将任意高的旋转状态持续。但是这种结构有多独特?在本文中,我们得出了一个新型的多参数家族,该家族具有四点散射幅度,表现出i)多项式有限的高能量行为,ii)交换了无限型高旋转模式的无限塔,尽管每个共振有有限的状态。这些幅度采用无限产物形式,取决于参数,表现出无界或有限的质谱,因此分别对应于委内撒诺和Coon振幅的概括。对于有界的情况,质量会融合到一个累积点,这是在COON振幅中看到的特殊特征,但最近在字符串理论中自然而然地理解了这一点。重要的是,我们的幅度包含自由参数,允许自定义gegge轨迹中自旋依赖性的偏移。我们计算了此多参数类别的振幅类别的所有部分波,并确定参数空间的单一区域。对于无界情况,我们采用类似的方法来得出委内斯诺和Virasoro-Shapiro振幅的新变形。
String theory offers an elegant and concrete realization of how to consistently couple states of arbitrarily high spin. But how unique is this construction? In this paper we derive a novel, multi-parameter family of four-point scattering amplitudes exhibiting i) polynomially bounded high-energy behavior and ii) exchange of an infinite tower of high-spin modes, albeit with a finite number of states at each resonance. These amplitudes take an infinite-product form and, depending on parameters, exhibit mass spectra that are either unbounded or bounded, thus corresponding to generalizations of the Veneziano and Coon amplitudes, respectively. For the bounded case, masses converge to an accumulation point, a peculiar feature seen in the Coon amplitude but more recently understood to arise naturally in string theory. Importantly, our amplitudes contain free parameters allowing for the customization of the slope and offset of the spin-dependence in the Regge trajectory. We compute all partial waves for this multi-parameter class of amplitudes and identify unitary regions of parameter space. For the unbounded case, we apply similar methods to derive new deformations of the Veneziano and Virasoro-Shapiro amplitudes.