论文标题

部分可观测时空混沌系统的无模型预测

Efficient Automatic Machine Learning via Design Graphs

论文作者

Wu, Shirley, You, Jiaxuan, Leskovec, Jure, Ying, Rex

论文摘要

尽管自动化机器学习(AUTOML)的成功,旨在找到最佳设计,包括深网和超参数的架构,但常规的自动化方法在计算上还是很昂贵的,并且几乎没有提供有关不同模型设计选择的关系的见解。为了应对挑战,我们提出了Falcon,这是一种有效的基于样本的方法来搜索最佳模型设计。我们的关键见解是将可能的模型设计的设计空间建模为设计图,其中节点代表设计选择,而边缘表示设计相似性。 Falcon具有1)一个任务无关的模块,该模块通过图形神经网络(GNN)在设计图上执行消息,以及2)一个特定于任务的模块,该模块在设计图上执行已知模型性能信息的标签传播。将两个模块组合在一起以预测设计空间中的设计性能,从而导致搜索方向。我们对来自各个应用程序域的27个节点和图形分类任务进行了广泛的实验,以及CIFAR-10数据集上的图像分类任务。我们从经验上表明,猎鹰只能使用30个探索的节点有效地为每个任务有效地获得良好的设计。具体而言,Falcon的时间成本可比,与最佳基线相比,一杆方法的平均提高3.3%。

Despite the success of automated machine learning (AutoML), which aims to find the best design, including the architecture of deep networks and hyper-parameters, conventional AutoML methods are computationally expensive and hardly provide insights into the relations of different model design choices. To tackle the challenges, we propose FALCON, an efficient sample-based method to search for the optimal model design. Our key insight is to model the design space of possible model designs as a design graph, where the nodes represent design choices, and the edges denote design similarities. FALCON features 1) a task-agnostic module, which performs message passing on the design graph via a Graph Neural Network (GNN), and 2) a task-specific module, which conducts label propagation of the known model performance information on the design graph. Both modules are combined to predict the design performances in the design space, navigating the search direction. We conduct extensive experiments on 27 node and graph classification tasks from various application domains, and an image classification task on the CIFAR-10 dataset. We empirically show that FALCON can efficiently obtain the well-performing designs for each task using only 30 explored nodes. Specifically, FALCON has a comparable time cost with the one-shot approaches while achieving an average improvement of 3.3% compared with the best baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源