论文标题
部分可观测时空混沌系统的无模型预测
Inequalities for $f^*$-vectors of Lattice Polytopes
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The Ehrhart polynomial $\text{ehr}_P(n)$ of a lattice polytope $P$ counts the number of integer points in the $n$-th integral dilate of $P$. The $f^*$-vector of $P$, introduced by Felix Breuer in 2012, is the vector of coefficients of $\text{ehr}_P(n)$ with respect to the binomial coefficient basis $ \left\{\binom{n-1}{0},\binom{n-1}{1},...,\binom{n-1}{d}\right\}$, where $d = \dim P$. Similarly to $h/h^*$-vectors, the $f^*$-vector of $P$ coincides with the $f$-vector of its unimodular triangulations (if they exist). We present several inequalities that hold among the coefficients of $f^*$-vectors of polytopes. These inequalities resemble striking similarities with existing inequalities for the coefficients of $f$-vectors of simplicial polytopes; e.g., the first half of the $f^*$-coefficients increases and the last quarter decreases. Even though $f^*$-vectors of polytopes are not always unimodal, there are several families of polytopes that carry the unimodality property. We also show that for any polytope with a given Ehrhart $h^*$-vector, there is a polytope with the same $h^*$-vector whose $f^*$-vector is unimodal.