论文标题
部分可观测时空混沌系统的无模型预测
DIGMN: Dynamic Intent Guided Meta Network for Differentiated User Engagement Forecasting in Online Professional Social Platforms
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
User engagement prediction plays a critical role for designing interaction strategies to grow user engagement and increase revenue in online social platforms. Through the in-depth analysis of the real-world data from the world's largest professional social platforms, i.e., LinkedIn, we find that users expose diverse engagement patterns, and a major reason for the differences in user engagement patterns is that users have different intents. That is, people have different intents when using LinkedIn, e.g., applying for jobs, building connections, or checking notifications, which shows quite different engagement patterns. Meanwhile, user intents and the corresponding engagement patterns may change over time. Although such pattern differences and dynamics are essential for user engagement prediction, differentiating user engagement patterns based on user dynamic intents for better user engagement forecasting has not received enough attention in previous works. In this paper, we proposed a Dynamic Intent Guided Meta Network (DIGMN), which can explicitly model user intent varying with time and perform differentiated user engagement forecasting. Specifically, we derive some interpretable basic user intents as prior knowledge from data mining and introduce prior intents in explicitly modeling dynamic user intent. Furthermore, based on the dynamic user intent representations, we propose a meta predictor to perform differentiated user engagement forecasting. Through a comprehensive evaluation on LinkedIn anonymous user data, our method outperforms state-of-the-art baselines significantly, i.e., 2.96% and 3.48% absolute error reduction, on coarse-grained and fine-grained user engagement prediction tasks, respectively, demonstrating the effectiveness of our method.