论文标题

部分可观测时空混沌系统的无模型预测

Large deviation principle for persistence diagrams of random cubical filtrations

论文作者

Hiraoka, Yasuaki, Kanazawa, Shu, Miyanaga, Jun, Tsunoda, Kenkichi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The objective of this article is to investigate the asymptotic behavior of the persistence diagrams of a random cubical filtration as the window size tends to infinity. Here, a random cubical filtration is an increasing family of random cubical sets, which are the union of randomly generated higher-dimensional unit cubes with integer coordinates in a Euclidean space. We first prove the strong law of large numbers for the persistence diagrams, inspired by the work of Hiraoka, Shirai, and Trinh, where the persistence diagram of a filtration of random geometric complexes is considered. As opposed to prior papers treating limit theorems for persistence diagrams, the present article aims to further study the large deviation behavior of persistence diagrams. We prove a large deviation principle for the persistence diagrams of a class of random cubical filtrations, and show that the rate function is given as the Fenchel--Legendre transform of the limiting logarithmic moment generating function. In the proof, we also establish a general method of lifting a large deviation principle for the tuples of persistent Betti numbers to persistence diagrams for broad application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源