论文标题

部分可观测时空混沌系统的无模型预测

Quartic Samples Suffice for Fourier Interpolation

论文作者

Song, Zhao, Sun, Baocheng, Weinstein, Omri, Zhang, Ruizhe

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study the problem of interpolating a noisy Fourier-sparse signal in the time duration $[0, T]$ from noisy samples in the same range, where the ground truth signal can be any $k$-Fourier-sparse signal with band-limit $[-F, F]$. Our main result is an efficient Fourier Interpolation algorithm that improves the previous best algorithm by [Chen, Kane, Price, and Song, FOCS 2016] in the following three aspects: $\bullet$ The sample complexity is improved from $\widetilde{O}(k^{51})$ to $\widetilde{O}(k^{4})$. $\bullet$ The time complexity is improved from $ \widetilde{O}(k^{10ω+40})$ to $\widetilde{O}(k^{4 ω})$. $\bullet$ The output sparsity is improved from $\widetilde{O}(k^{10})$ to $\widetilde{O}(k^{4})$. Here, $ω$ denotes the exponent of fast matrix multiplication. The state-of-the-art sample complexity of this problem is $\sim k^4$, but was only known to be achieved by an *exponential-time* algorithm. Our algorithm uses the same number of samples but has a polynomial runtime, laying the groundwork for an efficient Fourier Interpolation algorithm. The centerpiece of our algorithm is a new sufficient condition for the frequency estimation task -- a high signal-to-noise (SNR) band condition -- which allows for efficient and accurate signal reconstruction. Based on this condition together with a new structural decomposition of Fourier signals (Signal Equivalent Method), we design a cheap algorithm for estimating each "significant" frequency within a narrow range, which is then combined with a signal estimation algorithm into a new Fourier Interpolation framework to reconstruct the ground-truth signal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源