论文标题

部分可观测时空混沌系统的无模型预测

B$^3$RTDP: A Belief Branch and Bound Real-Time Dynamic Programming Approach to Solving POMDPs

论文作者

Adalgeirsson, Sigurdur Orn, Breazeal, Cynthia

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Partially Observable Markov Decision Processes (POMDPs) offer a promising world representation for autonomous agents, as they can model both transitional and perceptual uncertainties. Calculating the optimal solution to POMDP problems can be computationally expensive as they require reasoning over the (possibly infinite) space of beliefs. Several approaches have been proposed to overcome this difficulty, such as discretizing the belief space, point-based belief sampling, and Monte Carlo tree search. The Real-Time Dynamic Programming approach of the RTDP-Bel algorithm approximates the value function by storing it in a hashtable with discretized belief keys. We propose an extension to the RTDP-Bel algorithm which we call Belief Branch and Bound RTDP (B$^3$RTDP). Our algorithm uses a bounded value function representation and takes advantage of this in two novel ways: a search-bounding technique based on action selection convergence probabilities, and a method for leveraging early action convergence called the \textit{Convergence Frontier}. Lastly, we empirically demonstrate that B$^3$RTDP can achieve greater returns in less time than the state-of-the-art SARSOP solver on known POMDP problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源