论文标题

部分可观测时空混沌系统的无模型预测

Single Image Super-Resolution via a Dual Interactive Implicit Neural Network

论文作者

Nguyen, Quan H., Beksi, William J.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper, we introduce a novel implicit neural network for the task of single image super-resolution at arbitrary scale factors. To do this, we represent an image as a decoding function that maps locations in the image along with their associated features to their reciprocal pixel attributes. Since the pixel locations are continuous in this representation, our method can refer to any location in an image of varying resolution. To retrieve an image of a particular resolution, we apply a decoding function to a grid of locations each of which refers to the center of a pixel in the output image. In contrast to other techniques, our dual interactive neural network decouples content and positional features. As a result, we obtain a fully implicit representation of the image that solves the super-resolution problem at (real-valued) elective scales using a single model. We demonstrate the efficacy and flexibility of our approach against the state of the art on publicly available benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源