论文标题

部分可观测时空混沌系统的无模型预测

Estimating probabilities of multivariate failure sets based on pairwise tail dependence coefficients

论文作者

Kiriliouk, Anna, Zhou, Chen

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Estimating the probability of extreme events involving multiple risk factors is a critical challenge in fields such as finance and climate science. This paper proposes a semi-parametric approach to estimate the probability that a multivariate random vector falls into an extreme failure set, based on the information in the tail pairwise dependence matrix (TPDM) only. The TPDM provides a partial summary of tail dependence for all pairs of components of the random vector. We propose an efficient algorithm to obtain approximate completely positive decompositions of the TPDM, enabling the construction of a max-linear model whose TPDM approximates that of the original random vector. We also provide conditions under which the approximation turns out to be exact. Based on the decompositions, we can construct max-linear random vectors to estimate failure probabilities, exploiting its computational simplicity. The algorithm allows to obtain multiple decompositions efficiently. Finally, we apply our framework to estimate probabilities of extreme events for real-world datasets, including industry portfolio returns and maximal wind speeds, demonstrating its practical utility for risk assessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源