论文标题
在2二定理想的REES代数上
On Rees algebras of 2-determinantal ideals
论文作者
论文摘要
让我成为带有预期编码的线性形式的2 b n n矩阵的未成年人的理想。在本文中,我们证明了I及其特殊纤维环的Rees代数是Cohen-Macaulay和Koszul。特别是它们是二次代数。我们方法中的主要新颖性是对确定性理想的希尔伯特方案的分层分析。我们研究REES代数沿该分层的退化,并将其与某些无方格的Groebner变性结合使用。
Let I be the ideal of minors of a 2 by n matrix of linear forms with the expected codimension. In this paper we prove that the Rees algebra of I and its special fiber ring are Cohen-Macaulay and Koszul; in particular, they are quadratic algebras. The main novelty in our approach is the analysis of a stratification of the Hilbert scheme of determinantal ideals. We study degenerations of Rees algebras along this stratification, and combine it with certain squarefree Groebner degenerations.