论文标题
通过有限的次级临时保证,懒惰的增量搜索以进行有效的重建
Lazy Incremental Search for Efficient Replanning with Bounded Suboptimality Guarantees
论文作者
论文摘要
我们提出了一种懒惰的增量搜索算法,终生GLS(L-GLS)以及其有限的次优版本,有界的L-GLS(B-LGLS),它们结合了增量搜索算法的搜索效率,即在Expectanning There-Edge-evaluys中更昂贵的范围内的评估搜索算法的评估效应与懒惰搜索的评估效率相结合。所提出的算法将终身规划A*(LPA*)及其有限的次优版本(截断的LPA*(TLPA*))内,在广义懒惰搜索(GLS)框架内,以限制昂贵的边缘评估,仅在经过不合时宜的成本到次数的情况下,在当前最短的近距离时进行了修复。我们还介绍了L-GLS和B-LGLS算法的动态版本,称为广义D*(GD*)和有界的广义D*(B-GD*),用于有效地使用专门用于导航移动机器人导航的非平稳性查询。我们证明,在找到不超过用户选择因素的最佳解决方案成本的解决方案时,提出的算法是完整而正确的。我们的数值和实验结果支持这样的说法,即与常规的增量或常规懒惰搜索算法相比,增量和懒惰搜索框架的拟议集成可以帮助更快地找到解决方案,而底层图表示经常更改。
We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge-evaluations are more expensive than vertex-expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often.