论文标题
随机镜下降,用于大规模稀疏恢复
Stochastic Mirror Descent for Large-Scale Sparse Recovery
论文作者
论文摘要
在本文中,我们讨论了随机近似值对高维稀疏参数的统计估计的应用。提出的解决方案还原以解决多阶段算法的每个阶段的惩罚随机优化问题。每个问题都被非欧几里得复合镜镜下降(CSMD)算法解决为规定的准确性。假设问题目标是平滑且四边形的次要扰动和随机扰动是次高斯的,我们的分析规定了确保估计误差快速收敛的方法参数(在近似解决方案周围给定标准的置信球的半径)。这种收敛是在例程的第一个“初步”阶段的线性,并且在第二个“渐近”阶段是sublinear。我们考虑了所提出的方法在稀疏的广义线性回归问题上的应用。在这种情况下,我们表明所提出的算法达到了回归器分布的弱假设下估计误差的最佳收敛性。我们还提供了一项数值研究,说明了该算法在高维模拟数据上的性能。
In this paper we discuss an application of Stochastic Approximation to statistical estimation of high-dimensional sparse parameters. The proposed solution reduces to resolving a penalized stochastic optimization problem on each stage of a multistage algorithm; each problem being solved to a prescribed accuracy by the non-Euclidean Composite Stochastic Mirror Descent (CSMD) algorithm. Assuming that the problem objective is smooth and quadratically minorated and stochastic perturbations are sub-Gaussian, our analysis prescribes the method parameters which ensure fast convergence of the estimation error (the radius of a confidence ball of a given norm around the approximate solution). This convergence is linear during the first "preliminary" phase of the routine and is sublinear during the second "asymptotic" phase. We consider an application of the proposed approach to sparse Generalized Linear Regression problem. In this setting, we show that the proposed algorithm attains the optimal convergence of the estimation error under weak assumptions on the regressor distribution. We also present a numerical study illustrating the performance of the algorithm on high-dimensional simulation data.