论文标题

可视化明显的名词属性预测的基于具体性的集合模型

Visualizing the Obvious: A Concreteness-based Ensemble Model for Noun Property Prediction

论文作者

Yang, Yue, Panagopoulou, Artemis, Apidianaki, Marianna, Yatskar, Mark, Callison-Burch, Chris

论文摘要

神经语言模型编码有关实体及其关系的丰富知识,可以使用探测从其表示形式中提取。然而,与其他类型的知识相比,名词(例如,红草莓,小蚂蚁)的常见特性更具挑战性,因为它们在文本中很少明确说明。我们假设这是感知属性的主要情况,这对交流的参与者来说是显而易见的。我们建议从图像中提取这些属性并将其在整体模型中使用,以补充从语言模型中提取的信息。我们认为感知特性比抽象属性更具体(例如,有趣,完美无瑕)。我们建议将形容词的具体分数用作杠杆,以校准每个源的贡献(文本与图像)。我们在排名任务中评估了我们的集合模型,在该任务中,名词的实际属性需要比其他非相关属性更高。我们的结果表明,与强大的基于文本的语言模型相比,提议的文本和图像的组合大大改善了名词属性预测。

Neural language models encode rich knowledge about entities and their relationships which can be extracted from their representations using probing. Common properties of nouns (e.g., red strawberries, small ant) are, however, more challenging to extract compared to other types of knowledge because they are rarely explicitly stated in texts. We hypothesize this to mainly be the case for perceptual properties which are obvious to the participants in the communication. We propose to extract these properties from images and use them in an ensemble model, in order to complement the information that is extracted from language models. We consider perceptual properties to be more concrete than abstract properties (e.g., interesting, flawless). We propose to use the adjectives' concreteness score as a lever to calibrate the contribution of each source (text vs. images). We evaluate our ensemble model in a ranking task where the actual properties of a noun need to be ranked higher than other non-relevant properties. Our results show that the proposed combination of text and images greatly improves noun property prediction compared to powerful text-based language models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源