论文标题
矩阵的决定因素与帕斯卡三角
Determinants of matrices related to the Pascal triangle
论文作者
论文摘要
在本说明中,我们证明了M. Levin在1999年做出的断言:Pascal矩阵Modulo 2具有在上边界或左边框上躺在每个方形子含量的特性,其属于$ \ MATHBB {Z} $,等于1或-1。
In this note we prove an assertion made by M. Levin in 1999: the Pascal matrix modulo 2 has the property that each of the square sub-matrices laying on the upper border or on the left border has determinants, computed in $\mathbb{Z}$, equal to 1 or -1.