论文标题

酒吧:机场跑道细分的基准

BARS: A Benchmark for Airport Runway Segmentation

论文作者

Chen, Wenhui, Zhang, Zhijiang, Yu, Liang, Tai, Yichun

论文摘要

机场跑道细分可以有效地降低着陆阶段的事故率,这是最大的飞行事故风险。随着深度学习(DL)的快速发展,相关方法在细分任务上实现了良好的性能,并且可以很好地适应复杂的场景。但是,该领域缺乏大规模公开可用的数据集使基于DL的方法的开发变得困难。因此,我们为机场跑道细分的基准提出了名为Bars的基准。此外,半自动注释管道旨在减少注释工作量。 Bars具有最大的数据集,其中最富有的类别是该字段中唯一的实例注释。使用X平面仿真平台收集的数据集包含10,256张图像和30,201个实例,其中包含三个类别。我们评估了钢筋上的11种代表性实例分割方法并分析其性能。基于定期形状的机场跑道的特征,我们建议分别针对基于掩码和基于轮廓的方法的平滑分段结果,提出了插件平滑的后处理后的模块(SPM)和轮廓点约束损失(CPCL)功能。此外,开发了一种新颖的评估度量平均平滑度(AS)以衡量平滑度。实验表明,现有的实例分割方法可以在棒上具有良好的性能实现预测结果。 SPM和CPCL可以有效地增强AS度量,同时适度提高准确性。我们的工作将在https://github.com/c-wenhui/bars上提供。

Airport runway segmentation can effectively reduce the accident rate during the landing phase, which has the largest risk of flight accidents. With the rapid development of deep learning (DL), related methods achieve good performance on segmentation tasks and can be well adapted to complex scenes. However, the lack of large-scale, publicly available datasets in this field makes the development of methods based on DL difficult. Therefore, we propose a benchmark for airport runway segmentation, named BARS. Additionally, a semiautomatic annotation pipeline is designed to reduce the annotation workload. BARS has the largest dataset with the richest categories and the only instance annotation in the field. The dataset, which was collected using the X-Plane simulation platform, contains 10,256 images and 30,201 instances with three categories. We evaluate eleven representative instance segmentation methods on BARS and analyze their performance. Based on the characteristic of an airport runway with a regular shape, we propose a plug-and-play smoothing postprocessing module (SPM) and a contour point constraint loss (CPCL) function to smooth segmentation results for mask-based and contour-based methods, respectively. Furthermore, a novel evaluation metric named average smoothness (AS) is developed to measure smoothness. The experiments show that existing instance segmentation methods can achieve prediction results with good performance on BARS. SPM and CPCL can effectively enhance the AS metric while modestly improving accuracy. Our work will be available at https://github.com/c-wenhui/BARS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源