论文标题

IT-Ruda:信息理论协助强大的无监督域适应

IT-RUDA: Information Theory Assisted Robust Unsupervised Domain Adaptation

论文作者

Rashidi, Shima, Tennakoon, Ruwan, Rekavandi, Aref Miri, Jessadatavornwong, Papangkorn, Freis, Amanda, Huff, Garret, Easton, Mark, Mouritz, Adrian, Hoseinnezhad, Reza, Bab-Hadiashar, Alireza

论文摘要

火车(源)和测试(目标)数据集之间的分配转移是机器学习应用程序中遇到的常见问题。解决此问题的一种方法是使用无监督的域适应性(UDA)技术,该技术将知识转移从富含标签的源域转移到未标记的目标域。在实践中使用UDA时,源或目标数据集中存在的异常值可能会引入其他挑战。在本文中,$α$ divergence被用作最大程度地减少源和目标分布之间的差异的措施,同时遗传鲁棒性,可使用单个参数$α$调节,作为此度量的重要特征。在这里,可以表明,其他众所周知的基于差异的UDA技术可以作为该方法的特殊情况得出。此外,就源损失和两个域之间的初始$α$ divergence而言,为目标域的损耗得出了理论上的上限。通过在开放集和部分UDA设置中测试的测试来验证所提出方法的鲁棒性,其中目标和源数据集中存在的额外类别被视为异常值。

Distribution shift between train (source) and test (target) datasets is a common problem encountered in machine learning applications. One approach to resolve this issue is to use the Unsupervised Domain Adaptation (UDA) technique that carries out knowledge transfer from a label-rich source domain to an unlabeled target domain. Outliers that exist in either source or target datasets can introduce additional challenges when using UDA in practice. In this paper, $α$-divergence is used as a measure to minimize the discrepancy between the source and target distributions while inheriting robustness, adjustable with a single parameter $α$, as the prominent feature of this measure. Here, it is shown that the other well-known divergence-based UDA techniques can be derived as special cases of the proposed method. Furthermore, a theoretical upper bound is derived for the loss in the target domain in terms of the source loss and the initial $α$-divergence between the two domains. The robustness of the proposed method is validated through testing on several benchmarked datasets in open-set and partial UDA setups where extra classes existing in target and source datasets are considered as outliers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源