论文标题
Markoff方程式和T线的未关注注释
Unfocused notes on the Markoff equation and T-Singularities
论文作者
论文摘要
我们考虑了$ \ mathbb {p}(e^2,f^2,g^2)$的加权投影平面的奇异性的最小分辨率,其中$ e,f,g $满足markoff方程$ e^2 + f^2 + f^2 + g^2 = 3efg $。我们从类似于弗罗贝尼乌斯(Frobenius)的古典作品的持续分数方面对这种决议进行了完整的分类。特别是,我们研究了突变下的决议的行为,并将出现的Cantor集描述为持续分数的限制。
We consider minimal resolutions of the singularities for weighted projective planes of type $\mathbb{P}(e^2, f^2, g^2)$, where $e, f, g$ satisfy the Markoff equation $ e^2 + f^2 + g^2 = 3efg$. We give a complete classification of such resolutions in terms of continued fractions similar to classical work of Frobenius. In particular, we investigate the behaviour of resolutions under mutations and describe a Cantor set emerging as limits of continued fractions.