论文标题

使用玻色符,三角六vertex模型的高二摄氏度组的特殊功能

Special Functions for Hyperoctahedral Groups Using Bosonic, Trigonometric Six-Vertex Models

论文作者

Brubaker, Ben, Grodzicki, Will, Schultz, Andrew

论文摘要

最近的著作试图实现某些正交的对称多项式家庭,作为精心选择的可解决晶格模型的分区函数。其中许多使用了由三角六个Vertex型$ r $ -Matrix(或这些权重的概括或专业化)产生的玻尔兹曼权重。在本文中,我们在设计用于B/C类型类型的晶格上寻求新的骨气模型变体,其分区功能与C型中的Zonal球形函数相匹配。在一般假设下,我们发现这是所有最高权重$ 2 $和$ 3 $的最高权重,但不适合更高的等级。

Recent works have sought to realize certain families of orthogonal, symmetric polynomials as partition functions of well-chosen classes of solvable lattice models. Many of these use Boltzmann weights arising from the trigonometric six-vertex model $R$-matrix (or generalizations or specializations of these weights). In this paper, we seek new variants of bosonic models on lattices designed for type B/C root systems, whose partition functions match the zonal spherical function in type C. Under general assumptions, we find that this is possible for all highest weights in rank $2$ and $3$, but not for higher rank.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源