论文标题
开放量子系统中的初始相关性:构建线性动力学图和主方程
Initial Correlations in Open Quantum Systems: Constructing Linear Dynamical Maps and Master Equations
论文作者
论文摘要
我们研究了开放量子系统的动力学,这些量子系统最初与它们的环境相关。我们方法的策略是分析给定的,固定的初始相关性如何修改开放系统相对于相应的不相关的动力学行为的演变,并具有相同的固定初始环境状态,这是完全正面动态图所述的。我们表明,对于任何预定的初始相关性,都可以在开放系统运算符的空间上引入线性动态图,该图像物理状态集中的适当动态映射一样,代表其唯一的线性扩展。此外,我们证明了这种构造导致了一个线性的,时空的量子主方程,具有广义的lindblad结构,涉及时间依赖性的,可能是负过渡速率。因此,即使在任意,固定的初始系统 - 环境相关性的情况下,也可以通过时间局部主方程来描述开放量子系统的一般非马克维亚动力学。我们提供了一些说明性的例子,并解释了我们的方法与文献中提出的其他几种方法的关系。
We investigate the dynamics of open quantum systems which are initially correlated with their environment. The strategy of our approach is to analyze how given, fixed initial correlations modify the evolution of the open system with respect to the corresponding uncorrelated dynamical behavior with the same fixed initial environmental state, described by a completely positive dynamical map. We show that, for any predetermined initial correlations, one can introduce a linear dynamical map on the space of operators of the open system which acts like the proper dynamical map on the set of physical states and represents its unique linear extension. Furthermore, we demonstrate that this construction leads to a linear, time-local quantum master equation with generalized Lindblad structure involving time-dependent, possibly negative transition rates. Thus, the general non-Markovian dynamics of an open quantum system can be described by means of a time-local master equation even in the case of arbitrary, fixed initial system-environment correlations. We present some illustrative examples and explain the relation of our approach to several other approaches proposed in the literature.