论文标题
NASA:硬件启发的混合网络的神经体系结构搜索和加速
NASA: Neural Architecture Search and Acceleration for Hardware Inspired Hybrid Networks
论文作者
论文摘要
可以说,乘法是现代深层神经网络(DNN)中最具成本为主导的操作,从而限制了它们可实现的效率,因此在资源受限的应用程序中更广泛地部署。为了应对这一限制,开拓性的工作开发了手工制作的无乘法DNN,这些DNN需要专家知识和耗时的手动迭代,要求快速开发工具。为此,我们提出了一个称为NASA的神经体系结构搜索和加速框架,该框架可以自动乘法减少DNN的开发,并集成了专用的乘法还原的加速器,以提高DNNS的可实现效率。具体而言,NASA采用了神经体系结构搜索(NAS)空间,这些空间可以通过硬件启发的无乘法运算符(例如Shift and Adder)加强最先进的空间,并配备了新型的渐进式预处理策略(PGP),并与自定义的培训配方一起自动搜索最佳的乘法乘坐型DNNS;最重要的是,NASA进一步开发了一个专用的加速器,该加速器提倡一个基于块的模板和自动建模器专用于NASA-NAS,从而导致DNNS更好地利用其算法属性来提高硬件效率。实验结果和消融研究一致验证了NASA算法 - 硬件共同设计框架在可实现的准确性和效率折衷方面的优势。代码可在https://github.com/gatech-eic/nasa上找到。
Multiplication is arguably the most cost-dominant operation in modern deep neural networks (DNNs), limiting their achievable efficiency and thus more extensive deployment in resource-constrained applications. To tackle this limitation, pioneering works have developed handcrafted multiplication-free DNNs, which require expert knowledge and time-consuming manual iteration, calling for fast development tools. To this end, we propose a Neural Architecture Search and Acceleration framework dubbed NASA, which enables automated multiplication-reduced DNN development and integrates a dedicated multiplication-reduced accelerator for boosting DNNs' achievable efficiency. Specifically, NASA adopts neural architecture search (NAS) spaces that augment the state-of-the-art one with hardware-inspired multiplication-free operators, such as shift and adder, armed with a novel progressive pretrain strategy (PGP) together with customized training recipes to automatically search for optimal multiplication-reduced DNNs; On top of that, NASA further develops a dedicated accelerator, which advocates a chunk-based template and auto-mapper dedicated for NASA-NAS resulting DNNs to better leverage their algorithmic properties for boosting hardware efficiency. Experimental results and ablation studies consistently validate the advantages of NASA's algorithm-hardware co-design framework in terms of achievable accuracy and efficiency tradeoffs. Codes are available at https://github.com/GATECH-EIC/NASA.