论文标题

$ l^p $最大界限和索博莱夫的两参数的规律性

$L^p$ maximal bound and Sobolev regularity of two-parameter averages over tori

论文作者

Lee, Juyoung, Lee, Sanghyuk

论文摘要

我们研究了由Tori $ \ Mathbb {T} _t} _t _t _t^{s}的两个参数家族,研究由平均运算符$ f \ to \ Mathcal {a} _t^s f $定义的最大函数的$ l^p $有界性。 (t+s \cosθ)\ coscct,\,(t+s \cosθ)\ sinϕ,\,s \sinθ):θ,ϕ \ in [0,2π)\} $ in [0,2π)\} $ in $ c_0t> s> s> 0 $ for Some $ c_0 f而言(0,1)in(0,1)$。我们证明,当$ l^p $时,仅当$ p> 2 $时,相关的(两参数)最大功能在$ l^p $上有限。我们还获得了$ l^p $ - $ l^q $估计,用于本地最大运营商的额定范围,$ p,q $。此外,证明了尖锐的平滑估计值,包括操作员的急剧局部平滑估计值$ f \ to \ MATHCAL A_T^S F $和$ f \ to \ Mathcal A_T^{C_0T} F $。为了目的,我们利用波尔加恩(Demeter)对圆锥体和guth-wang-wang-zhang的脱钩不平等,对$ 2 $ dimensional Wave Operator的本地平滑估计值。

We investigate $L^p$ boundedness of the maximal function defined by the averaging operator $f\to \mathcal{A}_t^s f$ over the two-parameter family of tori $\mathbb{T}_t^{s}:=\{ ( (t+s\cosθ)\cosϕ,\,(t+s\cosθ)\sinϕ,\, s\sinθ): θ, ϕ\in [0,2π) \}$ with $c_0t>s>0$ for some $c_0\in (0,1)$. We prove that the associated (two-parameter) maximal function is bounded on $L^p$ if and only if $p>2$. We also obtain $L^p$--$L^q$ estimates for the local maximal operator on a sharp range of $p,q$. Furthermore, the sharp smoothing estimates are proved including the sharp local smoothing estimates for the operators $f\to \mathcal A_t^s f$ and $f\to \mathcal A_t^{c_0t} f$. For the purpose, we make use of Bourgain--Demeter's decoupling inequality for the cone and Guth--Wang--Zhang's local smoothing estimates for the $2$ dimensional wave operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源