论文标题

基于人工智能的电子健康记录和成像数据融合的方法

Artificial Intelligence-Based Methods for Fusion of Electronic Health Records and Imaging Data

论文作者

Mohsen, Farida, Ali, Hazrat, Hajj, Nady El, Shah, Zubair

论文摘要

医疗保健数据本质上是多模式的,包括电子健康记录(EHR),医疗图像和多摩学数据。结合这些多模式数据源,有助于更好地了解人类健康,并提供最佳的个性化医疗保健。人工智能(AI)技术,尤其是机器学习(ML)的进步,使这些不同数据模式的融合能够提供多模式见解。为此,在这篇范围的评论中,我们专注于合成和分析使用AI技术将多模式医学数据融合到不同临床应用的文献。更具体地说,我们专注于仅将EHR与医学成像数据融合在一起的研究,以开发用于临床应用的各种AI方法。我们对使用多模式融合的各种融合策略,用于执行每个临床应用多模式融合的ML算法的疾病和临床结果进行了全面分析,以及可用的多模式医学数据集。我们遵循Prisma-SCR指南。我们搜索了Embase,PubMed,Scopus和Google Scholar来检索相关研究。我们从符合纳入标准的34项研究中提取了数据。在我们的分析中,观察到典型的工作流程:通过应用常规机器学习(ML)或深度学习(DL)算法融合不同的数据方式,融合不同的数据方式,最后,通过临床结果预测评估了多模式融合。具体而言,早期融合是大多数多模式学习应用中最常用的技术(34个研究中的22种)。我们发现,多模式融合模型在同一任务上优于传统的单模式模型。从临床结果的角度来看,疾病诊断和预测是最常见的临床结果(分别在20和10项研究中报告)。

Healthcare data are inherently multimodal, including electronic health records (EHR), medical images, and multi-omics data. Combining these multimodal data sources contributes to a better understanding of human health and provides optimal personalized healthcare. Advances in artificial intelligence (AI) technologies, particularly machine learning (ML), enable the fusion of these different data modalities to provide multimodal insights. To this end, in this scoping review, we focus on synthesizing and analyzing the literature that uses AI techniques to fuse multimodal medical data for different clinical applications. More specifically, we focus on studies that only fused EHR with medical imaging data to develop various AI methods for clinical applications. We present a comprehensive analysis of the various fusion strategies, the diseases and clinical outcomes for which multimodal fusion was used, the ML algorithms used to perform multimodal fusion for each clinical application, and the available multimodal medical datasets. We followed the PRISMA-ScR guidelines. We searched Embase, PubMed, Scopus, and Google Scholar to retrieve relevant studies. We extracted data from 34 studies that fulfilled the inclusion criteria. In our analysis, a typical workflow was observed: feeding raw data, fusing different data modalities by applying conventional machine learning (ML) or deep learning (DL) algorithms, and finally, evaluating the multimodal fusion through clinical outcome predictions. Specifically, early fusion was the most used technique in most applications for multimodal learning (22 out of 34 studies). We found that multimodality fusion models outperformed traditional single-modality models for the same task. Disease diagnosis and prediction were the most common clinical outcomes (reported in 20 and 10 studies, respectively) from a clinical outcome perspective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源