论文标题

重力校正非等法量子误差校正

Non-Isometric Quantum Error Correction in Gravity

论文作者

Kar, Arjun

论文摘要

我们在二维dilaton重力中蒸发黑洞的玩具模型中构建和研究了一个非等法误差校正代码的集合。在边界中大块和哈密顿特征态的欧几里得路径积分状态的首选基础中,编码图与具有独立复杂的高斯随机条目的线性变换成正比,零均值和单位方差。使用度量浓度,我们表明,这种典型的代码很可能在黑洞的微域希尔伯特空间维度中可以在$ s $的状态下保留成对的内部产品。该集合的大小也是批量有效场理论希尔伯特空间维度的上限。使用类似的技术来证明存在特定国家的重建$ S $ - 保存代码空间统一运算符。当通过纠缠楔重建期望时,存在于子空间的州特定重建。我们评论与复杂性理论的关系和批量有效领域理论的细分。

We construct and study an ensemble of non-isometric error correcting codes in a toy model of an evaporating black hole in two-dimensional dilaton gravity. In the preferred bases of Euclidean path integral states in the bulk and Hamiltonian eigenstates in the boundary, the encoding map is proportional to a linear transformation with independent complex Gaussian random entries of zero mean and unit variance. Using measure concentration, we show that the typical such code is very likely to preserve pairwise inner products in a set $S$ of states that can be subexponentially large in the microcanonical Hilbert space dimension of the black hole. The size of this set also serves as an upper limit on the bulk effective field theory Hilbert space dimension. Similar techniques are used to demonstrate the existence of state-specific reconstructions of $S$-preserving code space unitary operators. State-specific reconstructions on subspaces exist when they are expected to by entanglement wedge reconstruction. We comment on relations to complexity theory and the breakdown of bulk effective field theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源