论文标题
噪音量子电路的资源有效仿真和应用于网络QRAM优化的应用
Resource-efficient simulation of noisy quantum circuits and application to network-enabled QRAM optimization
论文作者
论文摘要
Giovannetti,Lloyd和MacCone [Phys。莱特牧师。 100,160501]提出了一个量子随机访问存储器(QRAM)体系结构,以通过$ O(\ log(n))$ Quantum Switches和$ O(\ log(n))$地址Qubits检索$ n $(量子)内存单元格的任意叠加。为了实现物理QRAM,Chen等人。 [PRX Quantum 2,030319]最近显示,QRAM用$ O(\ log(n))$开销和内置误差检测本身映射到光学连接的量子网络上。但是,大型网络上的QRAM建模已被指数上升的经典计算要求所困扰。在这里,我们通过以下方式解决了这个瓶颈:(i)引入一种资源有效的方法,用于模拟大规模的嘈杂纠缠,使我们能够在各种噪声渠道下评估数百甚至数千吨; (ii)分析Chen等人的基于网络的QRAM作为量子数据中心或近期量子互联网规模的应用; (iii)引入基于网络的QRAM体系结构,以提高量子保真度和访问率。我们得出的结论是,基于网络的QRAM可以使用利用光子综合电路以及原子或原子样量子记忆的现有技术或近期技术构建。
Giovannetti, Lloyd, and Maccone [Phys. Rev. Lett. 100, 160501] proposed a quantum random access memory (QRAM) architecture to retrieve arbitrary superpositions of $N$ (quantum) memory cells via $O(\log(N))$ quantum switches and $O(\log(N))$ address qubits. Towards physical QRAM implementations, Chen et al. [PRX Quantum 2, 030319] recently showed that QRAM maps natively onto optically connected quantum networks with $O(\log(N))$ overhead and built-in error detection. However, modeling QRAM on large networks has been stymied by exponentially rising classical compute requirements. Here, we address this bottleneck by: (i) introducing a resource-efficient method for simulating large-scale noisy entanglement, allowing us to evaluate hundreds and even thousands of qubits under various noise channels; and (ii) analyzing Chen et al.'s network-based QRAM as an application at the scale of quantum data centers or near-term quantum internet; and (iii) introducing a modified network-based QRAM architecture to improve quantum fidelity and access rate. We conclude that network-based QRAM could be built with existing or near-term technologies leveraging photonic integrated circuits and atomic or atom-like quantum memories.