论文标题

对机器学习材料的鲁棒性和普遍性的批判性检查

A critical examination of robustness and generalizability of machine learning prediction of materials properties

论文作者

Li, Kangming, DeCost, Brian, Choudhary, Kamal, Greenwood, Michael, Hattrick-Simpers, Jason

论文摘要

机器学习(ML)方法的最新进展已导致针对社区基准的材料财产预测有了很大的改善,但是出色的基准得分可能并不意味着对性能的概括。在这里,我们表明,在材料项目2018(MP18)数据集中培训的ML模型可能会严重降低材料项目2021(MP21)数据集中的新化合物的预测性能。我们记录了用于定量和定性预测的图形神经网络和基于传统描述符的ML模型中的性能降解。我们发现预测性降解的来源是由于MP18和MP21版本之间的分布变化所致。这是由特征空间的均匀歧管近似和投影(UMAP)所揭示的。然后,我们证明可以使用一些简单的工具可以预见性能退化问题。首先,UMAP可用于研究特征空间内训练和测试数据的连通性和相对接近。其次,测试数据上多个ML模型之间的分歧可以照亮分布样本。我们证明,通过仅添加1〜\%的测试数据,简单而有效的UMAP引导和查询逐委员会获取策略可以极大地提高预测准确性。我们认为,这项工作为建筑材料数据库和ML模型提供了宝贵的见解,从而可以更好地预测鲁棒性和可推广性。

Recent advances in machine learning (ML) methods have led to substantial improvement in materials property prediction against community benchmarks, but an excellent benchmark score may not imply good generalization of performance. Here we show that ML models trained on the Materials Project 2018 (MP18) dataset can have severely degraded prediction performance on new compounds in the Materials Project 2021 (MP21) dataset. We document performance degradation in graph neural networks and traditional descriptor-based ML models for both quantitative and qualitative predictions. We find the source of the predictive degradation is due to the distribution shift between the MP18 and MP21 versions. This is revealed by the uniform manifold approximation and projection (UMAP) of the feature space. We then show that the performance degradation issue can be foreseen using a few simple tools. Firstly, the UMAP can be used to investigate the connectivity and relative proximity of the training and test data within feature space. Secondly, the disagreement between multiple ML models on the test data can illuminate out-of-distribution samples. We demonstrate that the simple yet efficient UMAP-guided and query-by-committee acquisition strategies can greatly improve prediction accuracy through adding only 1~\% of the test data. We believe this work provides valuable insights for building materials databases and ML models that enable better prediction robustness and generalizability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源