论文标题
活性材料中的奇数cosserat弹性
Odd Cosserat elasticity in active materials
论文作者
论文摘要
具有内部角度自由度的固体中的应力 - 应变构成关系可以使用cosserat(也称为微极)弹性进行建模。在本文中,我们探讨了包括手性活性成分和奇怪弹性的哥塞拉特材料自然扩展的现象学。我们计算了这种固体的静态弹性特性,其中我们表明对旋转应力的静态响应会导致取决于cosserat和奇弹性的菌株。然后,我们计算了在过度阻尼型中的这些奇数cosserat材料中线性溶液的分散体,并在分散关系中找到\ emph {特殊点}的存在。我们发现,这些特殊点在完全波动衰减的哥塞拉特式主导的状态与传播波的奇异弹性统一的状态之间建立了尖锐的边界。最后,我们通过显示cosserat和奇弹性项对雷利表面波的极化的影响。
Stress-strain constitutive relations in solids with an internal angular degree of freedom can be modelled using Cosserat (also called micropolar) elasticity. In this paper, we explore the phenomenology for a natural extension of Cosserat materials that includes chiral active components and odd elasticity. We calculate static elastic properties of such a solid, where we show that static response to rotational stresses leads to strains that depend on both Cosserat and odd elasticity. We then compute the dispersion of linear solutions in these odd Cosserat materials in the overdamped regime and find the presence of \emph{exceptional points} in the dispersion relation. We discover that these exceptional points create a sharp boundary between a Cosserat-dominated regime of complete wave attenuation and an odd-elasticity-dominated regime of propagating waves. We conclude by showing the effect of Cosserat and odd elastic terms on the polarization of Rayleigh surface waves.