论文标题

$ g $ -shi安排的pak-stanley标签的重复

Repetitions of Pak-Stanley Labels in $G$-Shi Arrangements

论文作者

Bennett, Cara, Martinez, Lucy, Mock, Ava, Kirby, Gordon Rojas, Truax, Robin

论文摘要

给定一个简单的图形$ g $,可以定义称为$ g $ -shi布置的超平面布置。 Pak-Stanley算法用$ g_ \ bullet $ -parking函数标记此布置的区域。当$ g $是一个完整的图表时,我们恢复了SHI布置,而Pak-Stanley标签可以通过普通的停车功能进行两次射击。但是,对于适当的子图$ g \ subset k_n $,而pak-stanley标签仍然包括每$ g _ {\ bullet} $ - 停车功能,有些出现不止一次。 Pak-Stanley标签的这些重复是研究$ G $ -SHI安排和$ g _ {\ bullet} $ - 停车功能的一个主题。此外,$ g _ {\ bullet} $ - 停车功能已连接到许多其他组合对象(例如,在芯片射击中的超级符合配置)。在研究这些重复时,我们可以利用有关这些对象的现有结果,例如Dhar的燃烧算法。相反,我们的结果也对这些对象的研究也有影响。我们作品的关键见解是引入了一个称为“三行游戏”的组合模型。分析该游戏的历史以及它们如何诱导相同的结果使我们可以表征Pak-Stanley标签的多重性。使用此模型,我们为$ p_n $ -shi布置中的pak-stanley标签的多重性开发了分类定理,其中$ p_n $是$ n $ dertices上的路径图。然后,我们将三行游戏概括为$ t $ - 三行游戏。这使我们能够以$ t $ -shi的布置研究该地区的Pak-Stanley标签的多重性,其中$ t $是任何树。最后,我们讨论将我们的方法应用于任意图的可能性和困难。特别是,当$ g $是一个周期图时,我们分析了多重性,并证明了最大$ g _ {\ bullet} $的唯一性结果 - 使用三行游戏的所有图形停车功能。

Given a simple graph $G$, one can define a hyperplane arrangement called the $G$-Shi arrangement. The Pak-Stanley algorithm labels the regions of this arrangement with $G_\bullet$-parking functions. When $G$ is a complete graph, we recover the Shi arrangement, and the Pak-Stanley labels give a bijection with ordinary parking functions. However, for proper subgraphs $G \subset K_n$, while the Pak-Stanley labels still include every $G_{\bullet}$-parking function, some appear more than once. These repetitions of Pak-Stanley labels are a topic of interest in the study of $G$-Shi arrangements and $G_{\bullet}$-parking functions. Furthermore, $G_{\bullet}$-parking functions are connected to many other combinatorial objects (for example, superstable configurations in chip-firing). In studying these repetitions, we can draw on existing results about these objects such as Dhar's Burning Algorithm. Conversely, our results have implications for the study of these objects as well. The key insight of our work is the introduction of a combinatorial model called the Three Rows Game. Analyzing the histories of this game and how they induce identical outcomes lets us characterize the multiplicities of the Pak-Stanley labels. Using this model, we develop a classification theorem for the multiplicities of the Pak-Stanley labels of the regions in the $P_n$-Shi arrangement, where $P_n$ is the path graph on $n$ vertices. Then, we generalize the Three Rows Game into the $T$-Three Rows Game. This allows us to study the multiplicities of the Pak-Stanley labels of the regions in $T$-Shi arrangements, where $T$ is any tree. Finally, we discuss the possibilities and difficulties in applying our method to arbitrary graphs. In particular, we analyze multiplicities in the case when $G$ is a cycle graph, and prove a uniqueness result for maximal $G_{\bullet}$-parking functions for all graphs using the Three Rows Game.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源