论文标题
S3E:用于协作大满贯的多机器人多模式数据集
S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM
论文作者
论文摘要
对共同执行复杂任务的协作机器人系统的新兴需求加剧了研究社区在合作背景下同时推进同时本地化和映射(SLAM)的关注。尽管有这种兴趣,但对协作轨迹的现有数据集的可伸缩性和多样性仍然有限,尤其是在具有限制的观点的情况下,协作式SLAM(C-SLAM)的概括能力(C-SLAM)对于多项式任务的可行性至关重要。解决此差距,我们介绍了S3E,这是一个宽敞的多模式数据集。 S3E被横穿四个独特的协作轨迹范式的无人接地车队捕获,其中包括13个室外和5个室内序列。这些序列具有精心同步的和空间校准的数据流,包括360度激光云,高分辨率立体声成像,高频惯性测量单元(IMU)和超宽带(UWB)相对观测值。我们的数据集不仅超过了以前的规模,场景多样性和数据复杂性,而且还为协作和单个SLAM方法提供了详尽的分析和基准。要访问数据集和最新信息,请访问我们的存储库,网址为https://pengyu-team.github.io/s3e。
The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies. For access to the dataset and the latest information, please visit our repository at https://pengyu-team.github.io/S3E.