论文标题
在单调方蛋白异方差下的GLS
GLS under Monotone Heteroskedasticity
论文作者
论文摘要
广义最小平方(GL)是回归分析中最基本的工具之一。实施GLS的一个主要问题是估计错误项的条件差异功能,该术语通常需要限制性功能形式假设,以进行参数估计或平滑参数以进行非参数估计。在本文中,我们提出了一种替代方法,以利用异托子回归方法来估计非参数单调性约束下的条件方差函数。我们的GLS估计量在渐近上等同于具有条件误差方差的知识,仅涉及对修剪边界观测值的知识,不仅用于点估计,而且对于间隔估计或假设测试。我们的分析通过表明可能使用带有生成变量的等渗估计来扩展等值频率回归方法的范围,可以用作半帕拉梅术对象的第一阶段估计。仿真研究说明了所提出方法的出色样本表现。作为经验例子,我们重新访问了Acemoglu和Restrepo(2017)对人口老龄化与经济增长之间关系的研究,以说明我们的GLS估计量如何有效地减少估计错误。
The generalized least square (GLS) is one of the most basic tools in regression analyses. A major issue in implementing the GLS is estimation of the conditional variance function of the error term, which typically requires a restrictive functional form assumption for parametric estimation or smoothing parameters for nonparametric estimation. In this paper, we propose an alternative approach to estimate the conditional variance function under nonparametric monotonicity constraints by utilizing the isotonic regression method. Our GLS estimator is shown to be asymptotically equivalent to the infeasible GLS estimator with knowledge of the conditional error variance, and involves only some tuning to trim boundary observations, not only for point estimation but also for interval estimation or hypothesis testing. Our analysis extends the scope of the isotonic regression method by showing that the isotonic estimates, possibly with generated variables, can be employed as first stage estimates to be plugged in for semiparametric objects. Simulation studies illustrate excellent finite sample performances of the proposed method. As an empirical example, we revisit Acemoglu and Restrepo's (2017) study on the relationship between an aging population and economic growth to illustrate how our GLS estimator effectively reduces estimation errors.