论文标题
$ \ Mathcal {n} = 4 $超对称Yang-Mills理论
Modular-invariant large-$N$ completion of an integrated correlator in $\mathcal{N}=4$ supersymmetric Yang-Mills theory
论文作者
论文摘要
超对称定位的使用最近导致了$ \ Mathcal {n} = 4 $ SuperSymmetric Yang-Mills理论的半BPS运算符的某些集成相关器的模块化协变量表达式,并具有一般的经典仪表组$ g_n $。在这里,我们确定生成的函数,这些功能编码任何经典量规组的集成相关器,并提供了先前的猜想公式的证明。这使得对这些相关器在有限$ n $上的这些相关器的属性之间的关系以及它们在$ n $上的扩展之间的关系。特别是,它决定了大型非构成非晶状体形态模块化函数的总和的双重性非扰动完成。这些功能在$ n $中被成倍压制,并具有来自CONINCEIDER $(P,Q)$ - 字符串世界表Instantons的贡献总和。
The use of supersymmetric localisation has recently led to modular covariant expressions for certain integrated correlators of half-BPS operators in $\mathcal{N} = 4$ supersymmetric Yang-Mills theory with a general classical gauge group $G_N$. Here we determine generating functions that encode such integrated correlators for any classical gauge group and provide a proof of previous conjectured formulae. This gives a systematic understanding of the relation between properties of these correlators at finite $N$ and their expansions at large $N$. In particular, it determines a duality-invariant non-perturbative completion of the large-$N$ expansion in terms of a sum of novel non-holomorphic modular functions. These functions are exponentially suppressed at large $N$ and have the form of a sum of contributions from coincident $(p, q)$-string world-sheet instantons.