论文标题
在第二次谐波的纳米级间隙中控制场不对称
Controlling field asymmetry in nanoscale gaps for second harmonic generation
论文作者
论文摘要
等离子体二聚体天线通过将光挤入纳米级间隙来创造强场增强。这些光学热点对于增强非线性过程,例如谐波产生,光电子发射和超快电子传输具有很高的吸引力。除了大型田地增强外,这种现象通常需要控制热点中的田间不对称性,考虑到纳米长度尺度,这具有挑战性。在这里,通过强烈增强的第二次谐波生成,我们通过系统地将几何不对称性引入天线间隙,证明了对热点中场分布的前所未有的控制。我们使用浓缩的氦离子光束铣削的单晶金黄金来实现不对称的间隙二聚体天线,其中带有3 nm Apex半径的超呈尖端面向平坦的对应物,并在基本频率下保存粘结天线模式和辅助性场增强。通过降低尖端的开头,我们能够系统地增加场的增强和不对称性,从而增强对远场的第二个谐波辐射,对于等效的对称二聚体天线而言,这几乎完全抑制了。将这些发现与第二个谐波辐射模式以及定量非线性模拟相结合,我们进一步获得了对纳米级第二次谐波生成机理的明显详细见解。我们的结果为实现新型非线性纳米级系统的实现开辟了新的机会,在这种新型非线性纳米级系统中,对局部领域不对称的控制与大型田间增强相结合对于创建非肾脏功能至关重要。
Plasmonic dimer antennas create strong field enhancement by squeezing light into a nanoscale gap. These optical hotspots are highly attractive for boosting nonlinear processes, such as harmonic generation, photoelectron emission, and ultrafast electron transport. Alongside large field enhancement, such phenomena often require control over the field asymmetry in the hotspot, which is challenging considering the nanometer length scales. Here, by means of strongly enhanced second harmonic generation, we demonstrate unprecedented control over the field distribution in a hotspot by systematically introducing geometrical asymmetry to the antenna gap. We use focused helium ion beam milling of mono-crystalline gold to realize asymmetric-gap dimer antennas in which an ultra-sharp tip with 3 nm apex radius faces a flat counterpart, conserving the bonding antenna mode and the concomitant field enhancement at the fundamental frequency. By decreasing the tip opening angle, we are able to systematically increase both field enhancement and asymmetry, thus enhancing second harmonic radiation to the far-field, which is nearly completely suppressed for equivalent symmetric dimer antennas. Combining these findings with second harmonic radiation patterns as well as quantitative nonlinear simulations, we further obtain remarkably detailed insights into the mechanism of second harmonic generation at the nanoscale. Our results open new opportunities for the realization of novel nonlinear nanoscale systems, where the control over local field asymmetry in combination with large field enhancement is essential to create nonreciprocal functionalities.